PARTIALLY ADDITIVE STATES ON ORTHOMODULAR POSETS

BY

JOSEF TKADLEC (PRAGUE)

We fix a Boolean subalgebra B of an orthomodular poset P and study the mappings $s : P \to [0, 1]$ which respect the ordering and the orthocomplementation in P and which are additive on B. We call such functions B-states on P. We first show that every P possesses “enough” two-valued B-states. This improves the main result in [13], where B is the centre of P. Moreover, it allows us to construct a closure-space representation of orthomodular lattices. We do this in the third section. This result may also be viewed as a generalization of [6]. Then we prove an extension theorem for B-states giving, as a by-product, a topological proof of a classical Boolean result.

1. Basic definitions and preliminaries.

1.1. Definition. An orthomodular poset (abbr. an OMP) is a triple $(P, \leq, ')$ such that

1. (P, \leq) is a partially ordered set with a least element 0 and a greatest element 1,
2. the operation $' : P \to P$ is an orthocomplementation, i.e. for every $a, b \in P$ we have $a'' = a$ and $b' \leq a'$ whenever $a \leq b$,
3. the least upper bound exists for every pair of orthogonal elements in P ($a, b \in P$ are orthogonal, $a \perp b$, if $a \leq b'$),
4. the orthomodular law is valid in P: $b = a \vee (b \wedge a')$ whenever $a \leq b$ ($a, b \in P$).

A typical example of an OMP is the lattice of all projections in a Hilbert space or, of course, a Boolean algebra. (We do not assume that P is a lattice. If it is, we call it an orthomodular lattice.)

Throughout the paper, P will be an arbitrary OMP and B an arbitrary Boolean subalgebra of P. (By a Boolean subalgebra of P we mean a subset of P which forms a Boolean algebra with respect to \leq and $'$ inherited from P, see also [4], [7].) Let us state our basic definition.

1.2. Definition. Let B be a Boolean subalgebra of P. A partially additive state with respect to B (abbr. a B-state) is a mapping $s : P \to [0, 1]$ such that
(1) if $a \leq b$ then $s(a) \leq s(b)$ ($a, b \in P$),
(2) $s(a') = 1 - s(a)$ ($a \in P$),
(3) $s(a \lor b) = s(a) + s(b)$ provided $a \perp b$ and $a, b \in B$.

Let us denote the set of all B-states on P by $S_B(P)$. Thus $S_B(P) \subset [0, 1]^P$. In what follows we will make use of the following observations: The set $S_B(P)$ viewed as a subset of $[0, 1]^P$ is a convex compact. Indeed, the convexity is obvious and the compactness is a standard consequence of the Tikhonov theorem ($[0, 1]^P$ is considered with the pointwise topology). It should be noted that the “ordinary” state on P is exactly an element of the intersection $\bigcap S_B(P)$, where B runs over all Boolean subalgebras of P.

2. Two-valued B-states, B-ideals. Let us denote by $S_B^2(P)$ the set of all two-valued B-states on P. We will show in this section that $S_B^2(P)$ is rich enough to determine the ordering in P. This extends [13] which contains the same result in the much easier situation of B being the centre of P.

Let us first introduce an auxiliary notion.

2.1. Definition. Let B be a Boolean subalgebra of P. A partial ideal I on P with respect to B (abbr. a B-ideal) is a nonempty subset of P such that

(A) if $a \in I$ and $b \leq a$ then $b \in I$ ($a, b \in P$),
(B) $a \lor b \in I$ provided $a, b \in I \cap B$.

Further, we call a B-ideal I proper if

(C1) $a \in I$ implies $a' \notin I$.

Finally, we call a proper B-ideal I a B-prime ideal if

(C2) $a \in P \setminus I$ implies $a' \in I$.

In what follows we will sometime replace without noticing the condition (B) by the apparently weaker condition (B') equivalent to (B):

(B') $a \lor b \in I$ provided $a, b \in I \cap B$ and $a \perp b$.

The link between two-valued B-states and B-ideals is presented in the following simple proposition.

2.2. Proposition. There is a one-to-one correspondence between two-valued B-states and B-prime ideals given by the mapping $s \mapsto s^{-1}(0)$.

Proof. Obvious.

In the course of the following propositions we will show that any pair of noncomparable elements in P is separated by a B-prime ideal.
2.3. Proposition. Let \(\{I_\alpha; \alpha \in A\} \) be a collection of \(B \)-ideals in \(P \). Then the least \(B \)-ideal containing all \(I_\alpha \) \((\alpha \in A) \) is \(J = \bigcup \{I_\alpha; \alpha \in A\} \cup \{a \in P; a \leq b_1 \lor \cdots \lor b_n, \text{ where } b_k \in I_{\alpha_k} \cap B \text{ for any } k \in \{1, \ldots, n\}\} \).

Proof. The proof requires only a verification of the properties from the definition of a \(B \)-ideal.

Let us agree to call the \(B \)-ideal \(J \) from Proposition 2.3 the \(B \)-ideal generated by \(\{I_\alpha; \alpha \in A\} \).

Prior to the next propositions, observe that the elements \(b_k \) \((k \in \{1, \ldots, n\}) \) in Proposition 2.3 can be chosen pairwise orthogonal.

2.4. Proposition. Let \(I \subset P \) be a proper \(B \)-ideal. Suppose that \(\{a, a'\} \cap I = \emptyset \) for an \(a \in P \). Then the \(B \)-ideal generated by \(\{I, [0, a]\} \) is proper.

Proof. Suppose that the \(B \)-ideal \(J \) generated by \(\{I, [0, a]\} \) is not proper and seek a contradiction. If \(J \) is not proper, then there is an \(e \in P \) such that \(\{e, e'\} \subset J \). Observe that \(\{e, e'\} \not\subset I \cup [0, a] \). Indeed, both \(e, e' \) cannot be in \(I \) and if \(e \in [0, a] \) then \(e' \not\in I \).

According to Proposition 2.3 we may assume that \(e \leq b_1 \lor b_2, b_1 \in I \cap B, b_2 \in [0, a] \cap B \) and \(b_1 \perp b_2 \). We may also assume without any loss of generality that \(e = b_1 \lor b_2 \). Hence \(e' \in J \cap B \) and therefore there are \(b_3 \in I \cap B, b_4 \in [0, a] \cap B \) such that \(b_3 \perp b_4 \) and \(e' = b_3 \lor b_4 \). Then \(b_1, b_2, b_3, b_4 \) are pairwise orthogonal and, moreover, \(1 = e \lor e' = b_1 \lor b_2 \lor b_3 \lor b_4 \). Thus, \(a' \leq (b_2 \lor b_4)' = b_1 \lor b_3 \in I \), a contradiction.

2.5. Proposition. Each proper \(B \)-ideal is contained in a \(B \)-prime ideal.

Proof. By Zorn’s lemma, each proper \(B \)-ideal is contained in a maximal proper \(B \)-ideal. By Proposition 2.4, each maximal proper \(B \)-ideal is a \(B \)-prime ideal.

2.6. Proposition. Suppose that \(a \not\leq b \) \((a, b \in P) \). Then there exists a \(B \)-prime ideal \(I \) such that \(a \not\in I \) and \(b \in I \).

Proof. By Proposition 2.4, the \(B \)-ideal generated by \(\{[0, b], [0, a']\} \) is proper. The rest follows from Proposition 2.5.

2.7. Theorem. Let \(B \) be a Boolean subalgebra of \(P \). Suppose that \(a \not\leq b \) \((a, b \in P) \). Then there exists a two-valued \(B \)-state \(s \in S_B^2(P) \) such that \(s(a) = 1 \) and \(s(b) = 0 \).

Proof. This follows immediately from Propositions 2.6 and 2.2.

In the next section we will need the following result.
2.8. Theorem. Let \(B, B_1 \) be Boolean subalgebras of \(P \). Let \(s_1 \) be a two-valued state on \(B_1 \). Then there exists a two-valued \(B \)-state \(s \) on \(P \) such that \(s|B_1 = s_1 \).

Proof. Put \(I_1 = s_1^{-1}(0) \). Put further \(J = \{ b \in P; \text{there exists } a \in I_1 \text{ with } b \leq a \} \). Then \(J \) is a proper \(B \)-ideal and, according to Proposition 2.5, \(J \) is contained in a \(B \)-prime ideal \(I \). \(I_1 \) is a prime ideal on \(B_1 \), hence \(I \cap B = I_1 \). The rest follows from Proposition 2.2.

As the following example (due to Mirko Navara) shows, Theorem 2.7 cannot be improved in such a way that \(s \in S_{B_1}(P) \cap S_{B_2}(P) \) for given Boolean subalgebras \(B_1, B_2 \) of \(P \).

2.9. Example. Figure 1 shows the Greechie diagram (see [3]) of an orthomodular lattice \(P \). The elements \(a, b' \in P \) are not orthogonal, hence \(a \not\leq b \), but there is no \(s \in S_{B_1}(P) \cap S_{B_2}(P) \) such that \(s(a) = 1 \) and \(s(b) = 0 \).

3. A representation theorem for orthomodular lattices. The main result in this section is a representation of \(P \) by means of clopen sets in a compact Hausdorff closure space (a generalized Stone representation). We will show as an improvement of [6] (where \(B \) is the centre of \(P \)) that if \(P \) is a lattice and if we are given a Boolean subalgebra \(B \) in \(P \), we can ensure that the restriction of the representation to \(B \) becomes the Stone representation.

First we reformulate results of the previous section in a way convenient for our representation theorem.

3.1. Proposition. Let \(P \) be the set of all \(B \)-prime ideals in \(P \). Let the mapping \(i : P \to \exp P \) be defined by \(i(a) = \{ I \in P; a \notin I \} \). Finally, write \(\overline{A} = \bigcap\{ i(b); b \in P \text{ and } A \subset i(b) \} \) for any \(A \subset P \). Then

1) \(i(0) = \emptyset, i(1) = P \) and \(i : (P, \leq,') \to (i(P), \subset,') \) is an isomorphism,

2) if \(A_\alpha \in i(P) \) (\(\alpha \in A \)) and \(i : (P, \leq,') \to (i(P), \subset,') \) exists in \((i(P), \subset,') \), then \(\bigvee_{\alpha \in A} A_\alpha = \bigcup_{\alpha \in A} A_\alpha \),

3) if \(A, B \in i(B) \) then \(A \vee B = A \cup B \) and \(A \wedge B = A \cap B \).
Proof. The first property follows from the definition of i and from Theorem 2.7. As for the second property, we know that $\bigvee_{a \in A} A_a \in i(P)$ contains all A_a ($a \in A$) and therefore $\bigcup_{a \in A} A_a \subseteq \bigvee_{a \in A} A_a$. Then the equality $\bigcup_{a \in A} A_a = \bigvee_{a \in A} A_a$ follows from the definition of the “bar” operation. Finally, suppose that $I \in i(a \lor b)$, $a, b \in B$. Then $a \lor b \notin I$ and therefore either $a \notin I$ or $b \notin I$. Hence $I \in i(a) \cup i(b)$. Thus, $i(a \lor b) = i(a) \cup i(b)$ and we have $A \lor B = A \lor B$. Dually, $A \land B = (A' \lor B')' = (A' \lor B')' = A \cap B$.

Prior to stating our main result in this section let us shortly review basic facts on closure spaces (see [2], [6]). By a closure space we mean a pair $(X, \overline{\cdot})$, where X is a nonempty set and $\overline{\cdot}$: $\exp X \to \exp X$ is an operation which has the following four properties:

1. $\overline{\emptyset} = \emptyset$,
2. $A \subseteq \overline{A}$ for any $A \subseteq X$,
3. $A \subseteq B$ implies $\overline{A} \subseteq \overline{B}$ ($A, B \subseteq X$),
4. $\overline{A \cup B} = \overline{A} \lor \overline{B}$ for any $A \subseteq X$.

A set $A \subseteq X$ is called closed in $(X, \overline{\cdot})$ if $\overline{A} = A$ and $B \subseteq X$ is called open if $X \setminus B$ is closed. A closure space $(X, \overline{\cdot})$ is called Hausdorff if any pair of points in X can be separated by disjoint open sets, and $(X, \overline{\cdot})$ is called compact if any open covering of X has a finite subcovering. It should be noted that the intersection of any collection of closed sets is again a closed set. However, the union of two closed sets need not be closed.

Let us agree to write $CO(X)$ for the collection of all subsets of X which are simultaneously closed and open.

3.2. Theorem. Let P, i and $\overline{\cdot}$ have the same meaning as in Proposition 3.1. Then P is a compact Hausdorff closure space and $i(P) \subseteq CO(P)$. If P is a lattice, then $i(P) = CO(P)$.

Proof. One verifies easily that P is a closure space. Suppose that $a \in P$. Then $i(a) = \overline{i(a)}$ and therefore $i(a)$ is closed. Also, $i(a) = i(a') = i(a')'$ and therefore $i(a)$ is open. Thus $i(P) \subseteq CO(P)$. This allows us to prove that $(P, \overline{\cdot})$ is Hausdorff and compact. Indeed, if $I_1, I_2 \subseteq P$ and $I_1 \neq I_2$, then there is an element $a \in P$ such that $a \in I_1 \setminus I_2$ ($a' \in I_2 \setminus I_1$). We therefore have two disjoint open sets $i(a), i(a')$ which separate I_1, I_2.

To show that P is compact, consider an open covering $\{A_\alpha; \alpha \in A\}$ of P. Since every closed set in P is an intersection of elements of $i(P)$, every open set is a union of elements of $i(P)$, we therefore may (and will) suppose that $A_\alpha = i(a_\alpha)$ ($a_\alpha \in P$, $\alpha \in A$). Hence there is no B-prime ideal I such that $I \supset \{a_\alpha; \alpha \in A\}$. This means that the B-ideal J generated by $\{[0, a_\alpha]; \alpha \in A\}$ is not proper. It follows that for some $d \in P$ we have one of the following possibilities (see Proposition 2.3): Either $d \in [0, a_{\alpha_1}]$, $d' \in [0, a_{\alpha_2}]$ ($\alpha_1, \alpha_2 \in A$) or $d \leq b_1 \lor \cdots \lor b_n$ for $b_k \in B \cap [0, a_{\alpha_k}]$ ($\alpha_k \in A$, 5
Thus, in both cases we have found a finite subcovering of \(A \). In the former case \(a'_{\alpha 1} \leq d' \leq a_{\alpha 2} \) and therefore \(\mathcal{P} = i(a_{\alpha 1}) \cup i(a'_{\alpha 1}) \subseteq i(a_{\alpha 1}) \cup i(a_{\alpha 2}) \). In the latter case we may (and will) assume the equality instead of the inequality. Thus, we have \(d \in B \). Hence \(d' \in J \cap B \) and therefore we can write \(d' = \tilde{b}_1 \lor \cdots \lor \tilde{b}_m \) (\(b_k \in [0, a_{\alpha k}] \cap B \), \(\alpha_k \in A \), \(k \in \{1, \ldots, m\} \)). Then we have

\[
\mathcal{P} = i(d \lor d') = i(b_1 \lor \cdots \lor b_n \lor \tilde{b}_1 \lor \cdots \lor \tilde{b}_m) \\
= i(b_1) \lor \cdots \lor i(b_n) \lor i(\tilde{b}_1) \lor \cdots \lor i(\tilde{b}_m) \\
\subseteq i(a_{\alpha 1}) \lor \cdots \lor i(a_{\alpha m}).
\]

Thus, in both cases we have found a finite subcovering of \(\{ A_\alpha; \alpha \in A \} \).

Suppose now that \(P \) is a lattice and \(A \in CO(\mathcal{P}) \). According to the definition of the closure operation we may write \(A = \bigcup_{\alpha \in A} i(a_\alpha) \) for some \(a_\alpha \in P \). Making use of the compactness of \(\mathcal{P} \) we have \(A = \bigcup_{k=1}^n i(a_{\alpha k}) \) (\(\alpha_k \in A \), \(k \in \{1, \ldots, n\} \)). Thus, \(A = \bigvee_{k=1}^n i(a_{\alpha k}) = i(\bigvee_{k=1}^n a_{\alpha k}) \in i(P) \).

Before we state our last result in this section, recall that a mapping \(f : L_1 \to L_2 \) between two orthomodular lattices is called orthoisomorphism if \(f \) is one-to-one and respects ordering and orthocomplementation.

3.3. Theorem. Let \(B \) be a Boolean subalgebra of an orthomodular lattice \(P \). Then there exists a compact Hausdorff closure space \(\mathcal{P} \) such that \(P \) is orthoisomorphic to \(CO(\mathcal{P}) \). Moreover, the orthoisomorphism \(f : P \to CO(\mathcal{P}) \) can be taken such that \(f(B) \) is the Stone representation of \(B \).

Proof. This follows from Theorems 3.2 and 2.8.

4. Extensions of \(B \)-states. It is obvious that a trace of a \(B \)-state on \(B \) is a state. It is natural to ask whether any state on \(B \) is a trace of a \(B \)-state, i.e. whether the restriction \(r : S_B(P) \to S(B) \) is onto. In Theorem 2.8 we have showed that this is true for two-valued states. Here we generalize this result to arbitrary states on \(B \).

4.1. Theorem. Let \(B, B_1 \) be Boolean subalgebras of \(P \). If \(s_1 \) is a state on \(B_1 \), then there exists a \(B \)-state \(s \) on \(P \) such that \(s|B_1 = s_1 \).

Proof. We use the compactness of \(S = S_B(P) \cap S_{B_1}(P) \). In some places we partially utilize the technique of [11] and [10].

Let \(s_1 \) be a state on \(B_1 \) and let \(D = \{ d_1, \ldots, d_n \} \) be a partition of \(B_1 \). Thus, \(\bigvee_{k=1}^n d_k = 1 \) and \(d_i \perp d_j \) for \(i \neq j \) (\(i, j \in \{1, \ldots, n\} \)). Put \(F_D = \{ s \in S; s|D = s_1|D \} \). Let \(D \) denote the set of all partitions of \(B_1 \). We will show that \(\mathcal{F} = \{ F_D; D \in \mathcal{D} \} \) is a filter base consisting of nonempty closed sets in \(S \). First, every set \(F_D \) is closed by the definition of the topology in \(S \) ("pointwise convergence"). Let now \(D_1, D_2 \) be two partitions of \(B_1 \). Then \(F_{D_1} \cap F_{D_2} \supset F_{D_1 \lor D_2} \), where \(D_1 \lor D_2 = \{ d_1 \lor d_2; d_1 \in D_1 \text{ and } d_2 \in D_2 \} \) is
a partition of B_1. Finally, let D be a partition of B_1. For every $d \in D \setminus \{0\}$ take a state $s_d \in S_{B_1}^2(B_1)$ such that $s_d(d) = 1$ (Theorem 2.7). According to Theorem 2.8, for every $d \in D \setminus \{0\}$ there exists a B-state $\tilde{s}_d \in S_{B_1}^2(P)$ such that $\tilde{s}_d|B_1 = s_d$. Hence $\tilde{s}_d \in S$ and $s = \sum_{d \in D \setminus \{0\}} s_1(d) \tilde{s}_d \in F_D$. Thus, F is a centred system. Since S is compact, we have a B-state s such that $s \in \bigcap F$. It follows immediately from the definition of F that s extends s_1. The proof is complete.

It may be of independent interest to note the following corollary of the previous result which might be viewed as a topological proof of a classical Boolean result (see [5], [11], compare also [8]).

4.2. Corollary. Let B_1 be a Boolean subalgebra of a Boolean algebra B. Then every state on B_1 extends over B.

5. Open questions. Another concept of partial additivity of states (also stronger than in [13]) is studied in [12] and [1], where a theorem analogous to Theorem 2.7 is proved. The definition of the so-called central state (abbr. c-state) differs from the definition of B-state in the third condition:

$$(3^c) \ s(a \lor b) = s(a) + s(b) \text{ provided } a \perp b \text{ and } a \in C(P), b \in P,$$

where $C(P)$ is the centre of P.

It is an open problem whether results analogous to those in this paper are valid for B-states that are simultaneously c-states.

REFERENCES

DEPARTMENT OF MATHEMATICS
FACULTY OF ELECTRICAL ENGINEERING
TECHNICAL UNIVERSITY OF PRAGUE
166 27 PRAHA, CZECHOSLOVAKIA

*Reçu par le Rédaction le 16.1.1989;
en version modifiée le 15.5.1989*