Model for Random Union of Discs

Jesper Møller *) and Kateřina Helisová **)

*) Aalborg University (Denmark)
**) Czech Technical University/Charles University in Prague

5th May 2008
Outline

1. Describing model
2. Simulation
3. Power tessellation of a union of discs
4. Markov property of the model
5. Data
6. Statistical inference
7. Nowadays work
Point processes

Definition Consider N the system of locally finite subsets of \mathbb{R}^d with the σ-algebra $\mathcal{N} = \sigma\left(\{x \in N : \#(x \cap A) = m\} : A \in \mathcal{B}, m \in \mathbb{N}_0\right)$. A point process X defined on \mathbb{R}^d is a measurable mapping from some probability space (Ω, \mathcal{F}, P) to (N, \mathcal{N}).

Definition A locally finite, diffusion measure μ on \mathcal{B} satisfying $\mu(A) = \mathbb{E}X(A)$ for all $A \in \mathcal{B}$ is called the intensity measure.

Definition If there exists a function $\rho(x)$ for $x \in \mathbb{R}^d$ such that $\mu(A) = \int_A \rho(x) dx$, then $\rho(x)$ is called the intensity function.

Definition A point process is called finite point process if $\mu(\mathbb{R}^d) < \infty$.
Poisson point process

Definition The Poisson process Y is the process which satisfies:

- for any finite collection $\{A_n\}$ of disjoint sets in \mathbb{R}^d, the numbers of points in these sets, $Y(A_n)$, are independent random variables,
- for each $A \subset \mathbb{R}^d$ such that $\mu(A) < \infty$, $Y(A)$ has Poisson distribution with parameter $\mu(A)$, i.e. $P[Y(A) = k] = \frac{\mu(A)^k}{k!}e^{-\mu}$, where μ is the intensity measure.
Point process given by the density with respect to Poisson process

Let Y be the Poisson process with an intensity measure μ.

For $F \in \mathcal{N}$, denote $\Pi(F) = P(Y \in F)$.

Definition A point process X is given by density f with respect to the Poisson process Y if

$$P(X \in F) = \int_F f(x) \Pi(dx).$$
Model

Denoting $b = b(z, r)$ a disc with centre in $z \in \mathbb{R}^2$ and radius $r \in (0, \infty)$, we have a process of discs $\bigcup b_i = \bigcup b(z_i, r_i)$. Then, we identify b with the point $x = (z, r)$ in $\mathbb{R}^2 \times (0, \infty)$ and the process of discs $\bigcup b_i = \bigcup b(z_i, r_i)$ with a point process on $\mathbb{R}^2 \times (0, \infty)$.

The reference point process: A Poisson process Y (so that the reference Boolean model is the random set given by the union of discs in Y) with intensity measure $\rho(z) \, dz \, Q(dr)$ on $S \times (0, \infty)$, where $S \subset \mathbb{R}^2$ is bounded.

Model: The process X absolutely continuous with respect to the reference Poisson process Y, and given by density $f(x)$ for a finite configurations $x = \{x_1, \ldots, x_n\}$.
Exponential family model

General form of the density:

\[f_\theta(x) = \exp(\theta \cdot T(U_x)) / c_\theta \]

Set \(T = (A, L, \chi, N_{ic}, N_h, N_{bv}) \), where

- \(A = A(U_x) \) ...the area
- \(L = L(U_x) \) ...the perimeter
- \(\chi = \chi(U_x) \) ...the Euler-Poincaré characteristic
- \(N_h = N_h(U_x) \) ...the number of holes
- \(N_{ic} = N_{ic}(U_x) \) ...the number of isolated cells
- \(N_{bv} = N_{bv}(U_x) \) ...the number of boundary vertices,

i.e. the density is of the form

\[
f_\theta(x) = \frac{1}{c_\theta} \exp \left(\theta_1 A(U_x) + \theta_2 L(U_x) + \theta_3 \chi(U_x) + \theta_4 N_h(U_x) + \theta_5 N_{ic}(U_x) + \theta_6 N_{bv}(U_x) \right).
\]
Some simulated results

A power tessellation of a realization of the reference Poisson process with \(Q \) the uniform distribution on the interval \([0, 2]\), \(\rho(u) = 0.2 \) on a rectangular region \(S = [0, 30] \times [0, 30] \), and \(\rho(u) = 0 \) outside \(S \) (left) and \(A \)-interaction model with parameters \(\theta_1 = 0.1 \) (middle), resp. \(\theta_1 = -0.1 \) (right).
Some simulated results

(A, L, N_{cc})-interaction process, where $N_{cc}(U_x)$ is the number of connected components, with parameters $(0.6, -1, 1)$ (left), $(0.6, -1, 2)$ (middle) and $(0.6, -1, 5)$ (right).
Papangelou conditional intensity

Definition For finite $x \subset S \times (0, \infty)$ and $v \in S \times (0, \infty) \setminus x$, *Papangelou conditional intensity* is defined as

$$\lambda_\theta(x, v) = \frac{f_\theta(x \cup \{v\})}{f_\theta(x)}.$$

Denoting $W = A, L, \ldots$ and defining $W(x, v) = W(x \cup v) - W(x)$, we get

$$\lambda_\theta(x, v) = \exp(\theta_1 \cdot A(x, v) + \theta_2 \cdot L(x, v) + \cdots + \theta_6 \cdot N_{bv}(x, v)).$$
MCMC algorithm

1. Suppose that in time t, we have a configuration $x_t = \{x_1, \ldots, x_n\}$

2. Proposal in time $t + 1$:

 (a) with probability $1/2$, the proposal is $x_t \cup \{x_{n+1}\}$

 i. we accept the proposal with probability $\min\{1; h(x_t, x_{n+1})\}$

 and set $x_{t+1} = x_t \cup \{x_{n+1}\}$

 ii. else we set $x_{t+1} = x_t$

 (b) else, the proposal is $x_t \setminus \{x_i\}$

 i. we accept the proposal with probability $\min\{1; 1/h(x_t \setminus \{x_i\}, x_i)\}$

 and set $x_{t+1} = x_t \setminus \{x_i\}$

 ii. else $x_{t+1} = x_t$

where $h(x_t, x_{n+1}) = \lambda_\theta(x_t, x_{n+1}) \frac{|S|}{\rho \cdot (n+1)}$

and $h(x_t \setminus \{x_i\}, x_i) = \lambda_\theta(x_t \setminus \{x_i\}, x_i) \frac{|S|}{\rho \cdot n}$.
Power tessellation of a union of discs

Assume a union of discs $\mathcal{U} = \bigcup_{i} b_i$ in the general position.

For each disc b_i ($i \in I$) with ghost sphere s_i, let $s_i^+ = \{(y_1, y_2, y_3) \in s_i : y_3 \geq 0\}$ denote the corresponding upper hypersphere.

For $u \in b_i$, let $y_i(u)$ denote the unique point on s_i^+ those orthogonal projection on \mathbb{R}^2 is u.

Define

$$C_i = \{y_i(u) : u \in b_i, \|u - y_i(u)\| \geq \|u - y_j(u)\| \text{ for } u \in b_j, j \in I\}.$$

Denote B_i the orthogonal projection of C_i on \mathbb{R}^2.

Definition The system \mathcal{B} of all sets B_i is called a *power tessellation of a union of discs*.
Power tessellation of a union of discs

Left: A configuration of discs in general position. Middle: The upper hemispheres as seen from above. Right: The power tessellation of the union of discs.
Usefulness of power tessellation in MCMC algorithm

• $\chi(U_x) = N_c - N_{ie} + N_{iv}$

• Calculation of $A(U_x)$: instead of

$$A(U_x) = \sum_i A(b_i) - \sum_{\{i_1, i_2\}} A(b_{i_1} \cap b_{i_2}) \ldots (-1)^{n+1} \sum_{\{i_1, \ldots, i_n\}} A(b_{i_1} \cap \ldots \cap b_{i_n})$$

we use

$$A(U_x) = \sum_i B_i$$

• Analogously calculation of $L(U_x)$
Markov property

Recall that Papangelou conditional intensity is defined as
\[\lambda_\theta(x, v) = \frac{f_\theta(x \cup \{v\})}{f_\theta(x)}. \]

Definition The \(T \)-interaction process is said to be Markov with respect to a reflexive relation \(\sim \) (called *neighbourhood*) if \(\lambda_\theta(x, v) \) depends on \(x \) only through \(\{u \in x : u \sim v\} \), i.e. the neighbours in \(x \) to \(v \).

Remark: If the relation \(\sim \) depends on the configuration \(x \), the process is called nearest neighbour Markov process.

Hammersley-Clifford theorem A function \(f \) is the density of a Markov process if and only if there exists a function \(\phi \) such that
\[f(x) = \prod_{y \subset x} \phi(y) \] and \(\phi(y) = 1 \) whenever there exist \(y_i, y_j \in y \) such that \(y_i \not\sim y_j \).
Markov property - in terms of the connected components

The density is of the form

\[f_\theta(x) = \frac{1}{C_\theta} \prod_{K \in \mathcal{K}(U_x)} \exp(\theta_1 A(K) + \theta_2 L(K) + \theta_3 \chi(K) + \theta_4 N_h(K) + \theta_5 N_{ic}(K) + \theta_6 N_{bv}(K)) \]

where \(\mathcal{K}(U_x) \) is the set of connected components of \(U_x \).

Hammersley-Clifford theorem

\[\downarrow \]

the \(T \)-interaction process is a connected component Markov point process.
Data

Heather dataset first presented in (Diggle, 1981). The image shows the presence of heather (calluna vulgaris) (indicated by black) in a 10×20 m region at Jädraås, Sweeden.
Diggle’s model

Diggle modeled the presence of heather by a stationary random-disc Boolean model with the centres given by a stationary Poisson process and the radii i.i.d., independent of the centres, with Weibull distribution.

Problem: He observed that his fitted model generates more separate patches than in the data.

↓

Our model
Statistical inference - problems

Denote \mathbf{Y} the random set and W the observation window.

The statistical inference is complicated by the fact that

(i) we do not observe the individual discs but only their union within W,

(ii) in practice the grains may only approximately be discs and usually only a digital image is observed and the resolution makes it difficult to identify circular structures,

(iii) there occurs a problem with edge effects when \mathbf{Y} expands outside W.

Modified model

Recall

\[f_\theta(x) = \frac{\exp(\theta \cdot T(U_x))}{c_\theta}. \]

Original statistic

\[T = (A, L, \chi, N_h, N_{ic}, N_{bv}) \]

is replaced by

\[T = (A, L, N_{cc}, N_h), \]

i.e. the density is considered in the form

\[f_\theta(x) = \frac{1}{c_\theta} \exp(\theta_1 A(U_x) + \theta_2 L(U_x) + \theta_3 N_{cc}(U_x) + \theta_4 N_h(U_x)). \]
Solving of the edge effects problem

Split X into $X^{(a)}$, $X^{(b)}$, $X^{(c)}$ corresponding to discs belonging to connected components of \mathcal{U}_X which are respectively (a) contained in the window W, (b) intersecting both W and its complement W^c, (c) contained in W^c.

Let $x^{(b)}$ denote a realization of $X^{(b)}$, i.e. $x^{(b)}$ is a finite configuration of discs such that K intersects both W and W^c for all $K \in \mathcal{K}(\mathcal{U}_{x^{(b)}})$.

It holds that conditional on $X^{(b)} = x^{(b)}$, we have that $X^{(a)}$ and $X^{(c)}$ are independent, and the conditional distribution of $X^{(a)}$ depends only on $x^{(b)}$ through $V = W \cap \mathcal{U}_{x^{(b)}}$.
Solving edge effects problem

Illustrating possible realizations of $X^{(a)}$ (the full circles), $X^{(b)}$ (the dashed circles), and $X^{(c)}$ (the dotted circles).
Solving edge effects problem

Heather dataset without the components intersected by the boundary of the observation window.

Remark: For the data, $A(V)/A(W) = 0.2734$ when $A(Y \cap W)/A(W) = 0.5014 \Rightarrow$ loss of information.
Reference process

A realization of the reference Boolean model with the intensity $\rho = 2.45$ and R following the restriction of $N(0.26, 0.16^2)$ to the interval $[0, 0.50]$.
Estimates of parameters

Denote $f_\theta(x) = h_\theta(x)/c_\theta$ (i.e. $h_\theta(x) = \exp(\theta \cdot T(U_x))$ is the unnormalized density).

For an observation x, the log likelihood function is given by

$$l(\theta) = \log h_\theta(x) - \log c_\theta$$

and the score function

$$u(\theta) = d l(\theta)/d\theta = d \log h_\theta(x)/d\theta - d \log c_\theta/d\theta.$$

In the exponential family case, we have

$$l(\theta) = \theta \cdot T(U_x) - \log c_\theta \text{ and } u(\theta) = T(U_x) - \mathbb{E}_\theta T(U_x).$$

Problem: c_θ and $\mathbb{E}_\theta T(U_x)$ have no explicit expression.
Estimates of parameters

For fixed θ_0, the log likelihood ratio

$$l(\theta) - l(\theta_0) = \log(h_\theta(x)/h_{\theta_0}(x)) - \log(c_\theta/c_{\theta_0})$$

can be approximated by

$$l(\theta) - l(\theta_0) = \log(h_\theta(x)/h_{\theta_0}(x)) - \log \frac{1}{n} \sum_{m=0}^{n-1} h_\theta(Y_m)/h_{\theta_0}(Y_m),$$

where Y_m are realizations from $f_{\theta_0}(x)$ obtained from MCMC simulations.

Recall

$$u(\theta) = \frac{dl(\theta)}{d\theta}$$

and denote

$$j(\theta) = -\frac{du(\theta)}{d\theta}.$$
Estimates of parameters

Newton-Raphson method for maximising the log likelihood:

1. Set $\hat{\theta}^{(0)} = \theta_0$;

2. $(k+1)$-th iteration is given by

$$\hat{\theta}^{(k+1)} = \hat{\theta}^{(k)} + u_{\theta_0,n}(\hat{\theta}^{(k)}) \cdot j_{\theta_0,n}(\hat{\theta}^{(k)})^{-1},$$

where

$$u_{\theta_0,n}(\hat{\theta}^{(k)}) = T(\mathcal{U}_x) - \mathbb{E}_{\hat{\theta}^{(k)}, \theta_0,n} T(\mathcal{U}_X)$$

$$= T(\mathcal{U}_x) - \frac{\sum_{m=0}^{n-1} T(\mathcal{U}_{Y_m}) h_{\hat{\theta}(m)}(Y_m)/h_{\theta_0}(Y_m)}{\sum_{m=0}^{n-1} h_{\hat{\theta}(k)}(Y_m)/h_{\theta_0}(Y_m)}$$

and

$$j_{\theta_0,n}(\hat{\theta}^{(k)}) = \text{Var}_{\hat{\theta}^{(k)}, \theta_0,n} T(\mathcal{U}_X).$$
Estimates of parameters from the data

Using the heather data without the components intersected by the boundary of the observation window, we have

\[T = (A, L, N_{cc}, N_h) = (45.6(m^2), 204(m), 32, 2). \]

For the reference Boolean model we obtain

\[T = (A, L, N_{cc}, N_h) = (42.7(m^2), 220.8(m), 111, 6). \]
Estimates of parameters from the data

Simulation:

1. Simulations from $\theta_0 = (0, 0, 0, 0)$

2. After iterations 1 000 000 and 100 steps od N-R method we have $\hat{\theta} = (-1.70, 0.38, -0.73, -0.67)$

3. Simulations from $\theta_0 = (-1.70, 0.38, -0.73, -0.67)$:

n. Repeating the same procedure seven times, we get $\hat{\theta} = (-4.35, 1.02, -2.23, 0.89)$

Characteristics of the model with parameters $(-4.35, 1.02, -2.23, 0.89)$:

$$T = (A, L, N_{cc}, N_h) = (46.82(m^2), 199.99(m), 32, 2).$$
Simulated process

A realization of the T-interaction model with the parameters $(-4.35, 1.02, -2.23, 0.89)$.
Nowadays work

- Test the model against Boolean model and against some other sub-models
- Check the model
- Distribution of radii
Thank you for your attention!