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Abstract We show that a commutative bounded
integral orthomodular lattice is residuated iff it is a
Boolean algebra. This result is a consequence of [7,
Theorem 7.31]; however, our proof is independent and
uses other instruments.
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1 Commutative Bounded Integral Residuated
Orthomodular Lattices

Residuated lattices were first studied by Dilworth [1] in
1938. Recently they have became important in many-
valued logic framework. Indeed, Hájek’s BL-algebras,
Chang’s MV-algebras and Girard monoids—they rise
as Lindenbaum algebras from certain logical axioms
in a similar manner than Boolean algebras do from
Classical logic—are specific cases of residuated lattices
as they are commutative, bounded, integral residuated
lattices. More precisely, a lattice L = 〈L,≤,∧,∨,0,1〉
with the least element 0 and the largest element 1
is called commutative, bounded, integral residuated lat-
tice if it is endowed with a couple of binary operations
〈�,→〉 (called adjoint couple) such that � is associa-
tive, commutative, isotone and x� 1 = x holds for all
elements x ∈ L. Hence for every x, y ∈ L we obtain

x� y ≤ (x� 1) ∧ (1� y) ≤ x ∧ y .

Moreover, a Galois connection

x� y ≤ z iff x ≤ y → z

holds for all elements x, y, z ∈ L, for detail, see e.g.
[2, 3, 6]. In fact, there is a little bit of variations in ter-
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minology, Höhle [3] for example, calls such structures
commutative, residuated, integral `–monoids.

Notice that, in particular, the meet operation ∧ is
associative, commutative, isotone and x ∧ 1 = x holds
for all elements x ∈ L. Thus, it is relevant to study
lattices that can be considered as residuated with an
adjoint couple 〈∧,→〉. It is well-known that Boolean
algebras are such lattices. In these algebraic structures
the residuum operation → is defined by a stipulation
x→ y = ¬x ∨ y.

The unit real interval [0, 1], too, can be considered
as a residuated lattice where

x ∧ y = min{x, y} , x→ y =

{
1 if x ≤ y ,
y otherwise.

This structure is called Gödel algebra, obviously it is
commutative bounded and integral. Notice that the
Lindenbaum algebra of the corresponding Gödel logic is
another example of a (commutative bounded integral)
residuated lattice with an adjoint couple 〈∧,→〉.

Orthomodular lattices (or more generally orthomod-
ular posets) are studied as quantum logics, see e.g. [4].
An ortholattice is a lattice 〈L,≤,∧,∨, ′,0,1〉 with the
least element 0, the greatest element 1 and the or-
thocomplementation ′ : L → L fulfilling the properties
(a) x′′ = x for every x ∈ L, (b) x ≤ y implies y′ ≤ x′

for every x, y ∈ L, (c) x ∨ x′ = 1 for every x ∈ L. An
orthomodular lattice is an ortholattice L fulfilling the
orthomodular law : y = x ∨ (x′ ∧ y) for every x, y ∈ L
with x ≤ y.

The main motivation to write this paper is to spec-
ify such a lattice structure that would be interesting
both in many–valued logics framework and in quan-
tum logics framework, thus a commutative, bounded,
integral, residuated orthomodular lattice. It turns out,
however, that the only such lattices are Boolean al-
gebras which are uninteresting both in many–valued
logics and in quantum logics framework. In fact, our
result is not new, if follows from Theorem 7.31 in [7]
stating that the only complemented lattices which can
be residuated are Boolean algebras. However, our proof
is independent. Moreover, we assume that this negative
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result in generally unknown in both many–valued log-
ics community and quantum logics community.

We will use a characterization of Boolean algebras
in orthomodular lattices that is a consequence of the
characterization of Boolean algebras in orthomodular
posets given by Tkadlec [5], however we will present its
proof here.

Let us review some notions and properties of ortho-
modular lattices. Elements x, y of an orthomodular lat-
tice are called orthogonal (denoted by x ⊥ y) if x ≤ y′.
Let us denote y − x = y ∧ x′ for x ≤ y. Then for
every x ≤ y we have x ⊥ (y − x) and, according to
the orthomodular law, y = x ∨ (y − x). For every pair
x, y of elements of an orthomodular lattice we have and(
x−(x∧y)

)
∧y =

(
x∧(x∧y)′

)
∧y = (x∧y)∧(x∧y)′ =(

(x ∧ y)′ ∨ (x ∧ y)
)′

= 1′ = 0. It is well-known (see
e.g. [4]) that an orthomodular lattice is a Boolean al-
gebra iff every pair x, y of its elements is compatible,
i.e., x− (x ∧ y) and y − (x ∧ y) are orthogonal.

Theorem 1 An orthomodular lattice 〈L,≤
,∧,∨, ′,0,1〉 is a Boolean algebra iff for every x, y ∈ L
the condition x ∧ y = x ∧ y′ = 0 implies x = 0.

Proof ⇒: Let x, y ∈ L be such that x∧y = x∧y′ = 0.
Using the distributivity we obtain that x = x ∧ 1 =
x ∧ (y ∨ y′) = (x ∧ y) ∨ (x ∧ y′) = 0 ∨ 0 = 0.

⇐: We will show that every pair x, y ∈ L is compat-
ible. Let us denote z = x ∧ y, u = (x − z) ∧ y′. Then(
(x− z)− u

)
∧ y′ = 0 and, since (x− z) ∧ y = 0, also(

(x − z) − u
)
∧ y = 0. According to the assumption,

(x−z)−u = 0 and therefore x−z = u. Since u ⊥ y, we
have u ⊥ (y−z) and therefore x−(x∧y) and y−(x∧y)
are orthogonal. 2

Using this characterization we can prove the main
result of this paper.

Theorem 2 An orthomodular lattice is residuated iff
it is a Boolean algebra.

Proof ⇐: As we have already mentioned, a Boolean
algebra is residuated with 〈∧,→〉 for the residuum op-
eration → defined by x→ y = ¬x ∨ y.

⇒: It suffices to check the condition in Theorem 1.
Let us suppose that x ∧ y = x ∧ y′ = 0 for elements
x, y of the lattice in question. Since x� y ≤ x ∧ y and
x�y′ ≤ x∧y′, we obtain x�y ≤ 0 and x�y′ ≤ 0. The
Galois connection gives y ≤ (x→ 0) and y′ ≤ (x→ 0).
Since 1 = y ∨ y′, we obtain 1 ≤ (x → 0). The Galois
connection gives 1 � x ≤ 0. Since 1 � x = x and 0 is
the least element of the lattice, we obtain x = 0. The
proof is complete. 2
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