Constructions of Some Non- σ -porous Sets on the Real Line

Josef Tkadlec

MFF UK, Sokolovská 83, 186 00 Praha 8, Czechoslovakia

The class of σ -porous sets introduced by E. P. Dolzenko [1] often appears as a description of exceptional sets in case these sets are of measure zero and of the first category. The fact that the class of σ -porous sets is strictly contained in the class \mathcal{A} of sets which are of measure zero and of the first category was demonstrated by L. Zajíček [4]. Since the class \mathcal{A} has the properties

- (i) if a Borel set A does not belong to A, then A+A contains an interval, and
- (ii) each disjoint family of Borel sets not belonging to A is countable,

it is natural to ask if these properties also hold with \mathcal{A} replaced by the class of σ -porous sets. These problems were posed by P. D. Humke [3] and W. Wilczynski at the symposium "Real Analysis" held in August 1982 in Esztergom, Hungary. J. Foran and P. D. Humke [2] showed some "enveloping" properties of σ -porous sets and posed a problem whether there exists a porous set contained in no σ -porous G_{δ} set.

Here we give positive answer to the last question and prove that the class of σ -porous sets has neither of the properties (i) or (ii) even for perfect sets. To construct the corresponding examples we give a general method of the construction of perfect non- σ -porous sets, a special case of which has been used by L. Zajíček [4] in his construction of perfect non- σ -porous set of measure zero.

For a subset S of the real line we define the set

$$P(S) = \left\{ x \in S; \ \limsup_{\delta \to 0_+} \frac{l(S, x, \delta)}{\delta} > 0 \right\},\,$$

where $l(S, x, \delta)$ is the length of the longest subinterval of $(x - \delta, x + \delta)$ disjoint from S. The set S is said to be porous if P(S) = S and is said to be σ -porous if it can be written as a countable union of porous sets. The Lebesgue measure of the set S will be denoted by |S|. By an open (closed) interval we mean any nonempty open (closed) connected subset of the real line. If x is a positive real number and I an open (closed) interval, then x*I is the open (closed) interval with the same centre as I and with length $|x*I| = x \cdot |I|$. Through the paper we will distinguish the set of positive integers and the set of natural numbers (containing the number zero).

A general method of construction of perfect non- σ -porous sets. Assume that

- (a) $(k_n)_{n=1}^{\infty}$ is an arbitrary nondecreasing sequence of natural numbers such that $\lim_{n\to\infty} k_n = \infty$, and
- (b) for every closed interval R and every positive integer n, a finite system $\mathcal{D}_n(R)$ of closed subintervals of R is given.

For every closed interval R and every positive integer n we define the system $\mathcal{R}_n(R)$ of closed, non-overlapping subintervals of R as follows: The set E of all those endpoints of the intervals $2^k * D$, $k = 0, ..., k_n$, $D \in \mathcal{D}_n(R)$, which belong to Int R decompose R into $1 + \operatorname{card} E$ closed, non-overlapping (necessarily non-degenerated) subintervals of R. The system $\mathcal{R}_n(R)$ is the system of all such subintervals of R which are not subsets of any element of $\mathcal{D}_n(R)$.

Let a < b be real numbers. By induction we define systems \mathcal{R}_n of closed, non-overlapping intervals such that $\mathcal{R}_0 = \{[a,b]\}$ and $\mathcal{R}_n = \bigcup \{\mathcal{R}_n(R); R \in \mathcal{R}_{n-1}\}$ for every positive integer n.

Proposition. Suppose that for every positive integer n and every closed interval R the following conditions hold:

- (C1) Whenever $D \in \mathcal{D}_n(R)$, then $2^{k_n+1} * D \subset R$.
- (C2) Whenever $k \in \{0, ..., k_n\}$ and $D_1, D_2 \in \mathcal{D}_n(R)$ are such that $(2^k * D_1) \cap (2^k * D_2) \neq \emptyset$, then there is a $D \in \mathcal{D}_n(R)$ such that $(2^k * D_1) \cup (2^k * D_2) \subset (2^k * D)$.

Then the set $S = \bigcap_{n=0}^{\infty} \bigcup \{R; R \in \mathcal{R}_n\}$ is perfect and non- σ -porous.

Moreover, if the set S is nowhere dense and $G \supset P(S)$ is a G_{δ} set, then G is non- σ -porous.

Proof. It is easy to see that S is nonempty and perfect. Hence we need only to prove the second part of the proposition. Denote

$$\mathcal{D} = \bigcup_{n=0}^{\infty} \{ \text{Int } D; \ D \in \mathcal{D}_{n+1}(R) \text{ and } R \in \mathcal{R}_n \} \setminus \{\emptyset\},$$

$$G = \bigcap_{m=1}^{\infty} G_m,$$

where G_m (m = 1, 2, ...) are open sets.

Assume that G is σ -porous. Then there exists a sequence $(P_m)_{m=1}^{\infty}$ of porous sets such that

$$G = \bigcup_{m=1}^{\infty} P_m \tag{1}$$

and such that for every positive integer m, for every $x \in P_m$ and every $\delta > 0$, there exists an open interval $I \subset (x - \delta, x + \delta) \setminus P_m$ with $x \in 2 * I$ (this

immediately follows from [4], Theorem 4.5). We will construct a sequence $(F_m)_{m=0}^{\infty}$ of nonempty, perfect sets such that for every positive integer m, $F_m \cap P_m = \emptyset$ and $F_m \subset F_{m-1} \cap G_m$, which obviously contradicts (1). The sets F_m will be given by

$$F_m = R_m \setminus \bigcup \{2^m * D; \ D \subset R_m \text{ and } D \in \mathcal{D}\},\tag{2}$$

where $R_m \subset G_m$ belongs to some \mathcal{R}_{r_m} with

$$k_{r_m} \ge m + 1. \tag{3}$$

From (2), (3) and the conditions (C1) and (C2) it is clear that the sets F_m will be nonempty and perfect.

Let r_0 be a positive integer such that $k_{r_0} \geq 1$ and let $R_0 \in \mathcal{R}_{r_0}$. We put

$$F_0 = R_0 \setminus \bigcup \{D; \ D \subset R_0 \text{ and } D \in \mathcal{D}\} = R_0 \cap S.$$

Suppose now that m is a positive integer and that F_{m-1} has been already defined. The set S is nowhere dense, hence $P(S) \cap \operatorname{Int} R_{m-1} \cap F_{m-1} \neq \emptyset$ and we can find a positive integer $r'_m \geq r_{m-1}$ and an $R'_m \in \mathcal{R}_{r'_m}$ such that $R' \subset R_{m-1} \cap G_m$ and such that the set

$$F'_m = R'_m \setminus \bigcup \{2^{m-1} * D; D \subset R'_m \text{ and } D \in \mathcal{D}\} \subset F_{m-1}$$

is nonempty and perfect. We distinguish two cases:

- 1) $\overline{P}_m \not\supset F'_m$. Then there exists a positive integer r_m and an $R_m \in \mathcal{R}_{r_m}$ such that (3) holds, $R_m \subset R'_m \setminus \overline{P}_m$ and $R_m \cap F'_m$ is infinite. We define F_m by (2).
 - 2) $\overline{P}_m \supset F'_m$. Because

$$P_m \cap \operatorname{Int} R'_m \subset \bigcup \{2 * I; \ I \subset R'_m \setminus P_m \text{ is an open interval}\}$$

and the components of $R'_m \setminus F'_m$ are $2^{m-1} * D$, where $D \subset R'_m$ and $d \in \mathcal{D}$, it follows that

$$P_m \cap \operatorname{Int} R'_m \subset \bigcup \{2^m * D; \ D \subset R'_m \text{ and } D \in \mathcal{D}\}.$$

The set

$$F_m'' = R_m' \setminus \bigcup \{2_m * D; \ D \subset R_m' \text{ and } D \in \mathcal{D}\}\$$

is disjoint from $P_m \cap \operatorname{Int} R'_m$, nonempty and perfect. There exist a positive integer r_m and an $R_m \in \mathcal{R}_{r_m}$ such that (3) holds, $R_m \subset \operatorname{Int} R'_m$ and $R_m \cap F''_m$ is infinite. We define F_m by (2).

Corollary 1. There exists a porous set contained in no σ -porous G_{δ} set.

Theorem 1. There exists a perfect non- σ -porous set S such that for every finite sequence (c_1, \ldots, c_i) the set $\sum_{j=1}^{i} c_j S$ is of measure zero; hence for every countable set C the set

$$\left\{\sum_{j=1}^{i} c_{j} s_{j}; i \text{ is a natural number, } c_{j} \in C \text{ and } s_{j} \in S\right\}$$

does not contain any interval.

Proof. First we associate with every positive integer n, every closed interval R = [c, d] and every positive integer N a system $\mathcal{D}_n(R, N)$ of closed subintervals of R and polynomial (not depending on R, N) P_n of one variable such that $|R \setminus \bigcup \mathcal{D}_n(R, N)| \leq n \cdot 3^{-N} |R|$ as follows.

Define the points d_m , $m = 0, \pm 1, \ldots, \pm N, N + 1$, by

$$[d_0, d_1] = \frac{1}{2} * [c, d]$$

$$d_{-m} - c = \frac{1}{3} (d_{-m+1} - c), \quad m = 1, \dots, N$$

$$d - d_m = \frac{1}{3} (d - d_{m-1}), \quad m = 2, \dots, N + 1$$

It follows that

$$|(c, d_{-N})| = |(d_{N+1}, d)| = \frac{1}{4} \cdot 3^{-N} |R|.$$

Hence it is possible to find in each interval (d_m, d_{m+1}) , $m = 0, \pm 1, \ldots, \pm N$, a closed subinterval such that the system $\mathcal{D}_1(R, N)$ of all these intervals fulfils

$$|R \setminus \bigcup \mathcal{D}_1(R,N)| \leq 3^{-N}|R|.$$

The number of intervals in $\mathcal{D}_1(R, N)$ is $P_1(N) = 2N + 1$.

If n > 1 is a positive integer and for every closed interval R' and every positive integer N the system $\mathcal{D}_{n-1}(R',N)$ has been defined, then we define $\mathcal{D}_n(R,N)$ as follows: For every D from $\mathcal{D}_1(R,N)$ the endpoints of the intervals $2^{-k} * D$, $k = 0, \ldots, n-1$, decompose D into 2n-1 non-overlapping closed subintervals. For each such subinterval I we constructed the system $\mathcal{D}_{n-1}(I,N)$. The system $\mathcal{D}_n(R,N)$ is the union of all such systems $\mathcal{D}_{n-1}(I,N)$ and of the set $\{2^{-n-1} * D; D \in \mathcal{D}_1(R,N)\}$. Then

card
$$\mathcal{D}_n(R, N) = (2N+1) \cdot (1 + (2n-1) \cdot P_{n-1}(N)) = P_n(N)$$

$$|R \setminus \bigcup \mathcal{D}_n(R,N)| \le (3^{-N} + (n-1) \cdot 3^{-N}) \cdot |R| \le n \cdot 3^{-N} \cdot |R|$$

We select real numbers a < b, put $k_n = n-1$ for every positive integer n and construct the set S by our construction, where we put $\mathcal{D}_n(R) = \mathcal{D}_n(R, N_n)$ for suitable N_n such that

$$(\operatorname{card} \mathcal{R}_n)^n \cdot |\bigcup \mathcal{R}_n| \le \frac{1}{n}$$
 (4)

for every positive integer n. This is possible, because

$$(\operatorname{card} \mathcal{R}_n)^n \cdot |\bigcup \mathcal{R}_n| \le ((2nP_n(N_n) + 1) \cdot \operatorname{card} \mathcal{R}_{n-1})^n \cdot n \cdot 3^{-N_n} \cdot |\bigcup \mathcal{R}_{n-1}|.$$

According to Proposition the set S is non- σ -porous. From (4) it follows that for every positive integer n

$$|\sum_{j=1}^{i} c_{j}S| \leq |\sum_{j=1}^{i} c_{j} \left(\bigcup \mathcal{R}_{n}\right)| = |\bigcup_{R_{1} \in \mathcal{R}_{n}} \cdots \bigcup_{R_{i} \in \mathcal{R}_{n}} \sum_{j=1}^{i} c_{j}R_{j}|$$

$$\leq \sum_{R_{1} \in \mathcal{R}_{n}} \cdots \sum_{R_{i} \in \mathcal{R}_{n}} \sum_{j=1}^{i} |c_{j}| \cdot |R_{j}|$$

$$\leq i \cdot \max\{|c_{j}|; \ j=1,\ldots,i\} \cdot (\operatorname{card} \mathcal{R}_{n})^{i} \cdot |\bigcup \mathcal{R}_{n}|$$

$$\leq \frac{i}{n} \cdot \max\{|c_{j}|; \ j=1,\ldots,i\} \cdot (\operatorname{card} \mathcal{R}_{n})^{i-n},$$

hence $|\sum_{j=1}^{i} c_j S| = 0$.

Theorem 2. Let K be of the first category. Then there exists a perfect, non- σ -porous set S of measure zero disjoint from K.

Proof. We need only to prove that for every F_{σ} set K of the first category and of full measure there exists a perfect, non- σ -porous set S disjoint from K. Denote $K = \bigcup_{m=1}^{\infty} F_m$, where F_m (m = 1, 2, ...) are closed and nowhere dense. First we associate with every positive integer n, every closed interval R such that $K \cap \text{bdry } R = \emptyset$ and with every positive integer m a finite system $\mathcal{D}_n(R, m)$ of closed subintervals of R such that

$$(F_m \cap R) \subset \bigcup \{ \text{Int } D; \ D \in \mathcal{D}_n(R, m) \}$$
 (5)

as follows.

Because $F_m \cap \text{bdry } R = \emptyset$ and because F_m is closed and nowhere dense, there exists a finite disjoint system $\mathcal{D}_1(R,m)$ of closed non-degenerated subintervals of R such that (5) holds and that $2 * D \subset R$ whenever $D \in \mathcal{D}_1(R,m)$. Because the set K is of the first category it is possible to choose the system $\mathcal{D}_1(R,m)$ such that

$$K \cap \bigcup \{ \text{bdry } 2^k * D; k \text{ is an integer and } D \in \mathcal{D}_1(R, m) \} = \emptyset.$$

If n > 1 is a positive integer and for every closed interval R' with $K \cap$ bdry $R' = \emptyset$ and for every positive integer m the system $\mathcal{D}_{n-1}(R, m)$ has been defined, then we define $\mathcal{D}_n(R, m)$ as follows: For every D from $\mathcal{D}_1(R, m)$ the endpoints of the intervals $2^{-k} * D$, $k = 0, \ldots, n-1$, decompose D

into 2n-1 non-overlapping closed subintervals $I_j(D)$, $j=0,\ldots,2n-2$, $I_0(D)=2^{-n+1}*D$. We define

$$\mathcal{D}_n(R,m) = \bigcup \{ \mathcal{D}_{n-1}(I_j(D), m); \ j = 1, \dots, 2n - 2 \text{ and } D \in \mathcal{D}_1(R,m) \}$$

 $\cup \{ 2^{-n+1} * D; \ D \in \mathcal{D}_1(R,m) \}.$

We select real numbers a < b not belonging to K and put $k_n = n - 1$ for every positive integer n, $\mathcal{D}_n(R) = \mathcal{D}_n(R,n)$ for every closed interval R with $K \cap \text{bdry } R = \emptyset$ and for every positive integer n. We construct the set S by our construction. It is easy to see that the conditions (C1) and (C2) hold and that for every positive integer n, $(\bigcup \mathcal{R}_{n+1}) \cap F_n = \emptyset$. Therefore $S \cap K = \emptyset$ and, according to Proposition, the set S is non- σ -porous.

Corollary 2. There exists an uncountable family of disjoint non- σ -porous perfect subsets of the real line.

Remark. By combining the constructions of $\mathcal{D}_n(R)$ from proofs of Theorems 1 and 2 it is possible to construct the set S from Theorem 1 disjoint from a given set K of the first category.

References

- [1] E. P. Dolzenko: Boundary properties of arbitrary functions. Izv. Akad. Nauk SSSR Ser. Mat. **31** (1967), 3–14.
- [2] J. Foran, P. D. Humke: Some set theoretic properties of σ -porous sets. Real Anal. Exchange **6** (1980–81), 114–119.
- [3] P. D. Humke: Some problems in need solution. Real Anal. Exchange 7 (1981–82), 31–41.
- [4] L. Zajíček: Sets of σ -porosity and sets of σ -porosity(q). Čas. pro pěst mat. **101** (1976), 350–359.

Received May 5, 1983