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Abstract

We study various types of the interpolation property in posets and
effect algebras. We present connections to other properties of posets and
effect algebras (completeness, orthocompleteness, maximality property)
and a theorem about preserving compatibility to suprema and infima using
an interpolation property.
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1 Introduction

Effect algebras (and their equivalents D-posets) become a basic notion for quan-
tum structures (originated in quantum physics) as “unsharp” generalizations of
orthomodular lattices, orthomodular posets and orthoalgebras [2, 3].

There are various properties of effect algebras based on properties of upper
bounds for some sets of elements used in the literature. E.g., being a lattice,
completeness, orthocompleteness, interpolation property (e.g., [1, 4]), weak or-
thocompleteness (e.g., [6, 8]) maximality property (e.g., [7, 9]).

We study various types the interpolation property in the sense that we con-
sider also infinite sets. We present connections to other properties of posets and
effect algebras and present several generalizations of previous results.

The paper is organized as follows: Basic notions and known properties are
summarized in Section 2. In Section 3 we introduce various types of interpo-
lation properties and show connections between them. Section 4 brings results
concerning connections to other notions used in theories of partially ordered sets
and quantum structures, such as completeness, orthocompleteness, the maxi-
mality property. The result about preserving compatibility by the operations
of suprema and infima is presented in Section 5.

2 Basic notions and properties

2.1 Definition. An effect algebra is an algebraic structure (E,⊕,0,1) such
that E is a set, 0 and 1 are different elements of E, and ⊕ is a partial binary
operation on E such that for every a, b, c ∈ E the following conditions hold:

(1) a⊕ b = b⊕ a, if one side exists;
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(2) a⊕ (b⊕ c) = (a⊕ b)⊕ c, if one side exists;
(3) there is a unique orthosupplement a′ such that a⊕ a′ = 1;
(4) a = 0 whenever a⊕ 1 is defined.

For simplicity, we will use the notation E for an effect algebra. A partial
ordering on an effect algebra E is defined by a ≤ b if there is a c ∈ E such that
b = a ⊕ c. Such an element c is unique (if it exists) and is denoted by b 	 a.
In particular, 1 	 a = a′. With respect to this partial ordering, 0 (1, resp.) is
the least (the greatest, resp.) element of E. The orthosupplementation is an
antitone involution, i.e., for every a, b ∈ E, a′′ = a and b′ ≤ a′ whenever a ≤ b.
An orthogonality relation on E is defined by a ⊥ b if a⊕ b exists (that is if and
only if a ≤ b′). It can be shown that a ⊕ 0 = a for every a ∈ E and that the
cancellation law is valid: if a⊕c ≤ b⊕c then a ≤ b (in particular, if a⊕c = b⊕c
then a = b). See, e.g., [2, 3].

Some notions and results will be formulated for posets (partially ordered
sets). To simplify some notations we will use sets of elements instead of elements
as arguments of relations and operations in a usual way (considering all possible
choices of elements). E.g., if A,B are subsets of a poset then by A ≤ B we mean
that a ≤ b for every a ∈ A and every b ∈ B.

2.2 Definition. Let (P,≤) be a poset. An a ∈ P is the least element of P if
a ≤ P . An a ∈ P is a minimal element of P if there is no p ∈ P \ {a} with
p ≤ a. An a ∈ P is an upper bound (lower bound) of a set A ⊆ P if A ≤ a
(a ≤ A). P is downward directed if for every a, b ∈ P there is a c ∈ P such that
c ≤ a, b.

Obviously, the least element of a poset is its minimal element. On the other
hand, there are posets with more minimal elements (hence, without the least
element and not downward directed).

2.3 Definition. A bounded poset is a structure (P,≤,0,1) such that (P,≤) is
a poset, 0 is the least and 1 is the greatest element of P .

A de Morgan poset is a structure (P,≤, ′) where (P,≤) is a poset and ′ is
an antitone involution on P , i.e., it is a mapping P → P such that (1) b′ ≤ a′

whenever a, b ∈ P with a ≤ b, and (2) (a′)′ = a for every a ∈ P .

The following definition generalizes the maximality property introduced by
Tkadlec [7]. We need a slight generalization for posets that are not de Morgan.

2.4 Definition. A poset is a pseudolattice if every pair of its elements has a
minimal upper bound and a maximal lower bound.

For simplicity, we will use the notation P for a (bounded, de Morgan, resp.)
poset. Every effect algebra forms a bounded de Morgan poset. For every set A
in a de Morgan poset we have

∨
A = (

∧
A′)′ (

∧
A = (

∨
A′)′, resp.) whenever

one side of the equality exists.
We will deal with cardinals to make sharp upper bounds for cardinalities

of some sets. We accept that the proper class of all set cardinals is a cardinal
(the greatest one). Using this cardinal in fact adds no restriction, because every
set has smaller cardinality—usually the reference to this cardinal is omitted
(“property” instead of “α-property”). The least infinite cardinal (countable) is
the cardinality of the set of natural numbers and is denoted by ω0.
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3 Interpolation properties

The interpolation property was introduced by Goodearl [4] for partially ordered
abelian groups and by Bennet and Foulis [1] for effect algebras.

3.1 Definition. A poset P has the interpolation property if for every a, b, c, d ∈
P with {a, b} ≤ {c, d} there is an e ∈ P such that {a, b} ≤ e ≤ {c, d}.

In other words, the set of upper bounds of a two-element set is downward
directed. We generalize this notion using a general cardinality of involved sets.

3.2 Definition. Let α, β > 1 be cardinals. A poset P is (α, β)-interpolated if
for every nonempty A,B ⊂ P with A ≤ B, cardA < α and cardB < β there is
an element c ∈ P such that A ≤ c ≤ B (c is an interpolation of A,B). A poset
is α-interpolated if it is (α, α)-interpolated.

The notion of the 3-interpolated poset coincides with the original interpo-
lation property. This is the least nontrivial situation (if some of the sets is
one-element then its element is an interpolation). Obviously, if an interpolation
exists for some cardinals then it exists for smaller cardinals (greater then 1),
too. Let us remark that accepting empty sets in the definition above we obtain
a different notion (with “extrapolations”, i.e., lower and upper bounds). E.g.,
in the real interval (0, 1) every pair of nonempty sets A,B with A ≤ B has an
interpolation (e.g.,

∨
A) but, e.g., the pair ∅, (0, 1) has no interpolation. No

difference appears in bounded posets (e.g., in effect algebras).
Let us observe some properties. The first is a slight generalization of [4,

Proposition 2.2].

3.3 Proposition. Let α > 1 be a cardinal. Every (α, 3)-interpolated poset is
(α, ω0)-interpolated. Every (3, α)-interpolated poset is (ω0, α)-interpolated.

Proof. Let P be an (α, 3)-interpolated poset, A,B ⊂ P be nonempty, B be
finite. We will use the induction according to the number n of elements of the
set B. According to the assumption, the interpolation of A,B exists for n ≤ 2.
Let us suppose that it exists for a given natural number n ≥ 2 and let us consider
B = {b1, . . . , bn+1}. According to the assumption, there are interpolations di of
A, {bi, bn+1} for every i ∈ {1, . . . , n}. For D =

{
di : i ∈ {1, . . . , n}

}
we obtain

A ≤ D and cardD ≤ n, hence, according to the induction assumption, there is
a c ∈ E such that A ≤ c ≤ D and therefore A ≤ c ≤ B.

The second part can be proved analogously.

3.4 Corollary. Every 3-interpolated poset is ω0-interpolated.

According to previous statements, we may (and will) consider only infinite
cardinals for (α, β)-interpolated posets.

3.5 Proposition. Let α, β be infinite cardinals. A de Morgan poset is (α, β)-
interpolated if and only if it is (β, α)-interpolated.

Proof. Let P be a (α, β)-interpolated de Morgan poset, A,B ⊂ P be nonempty
sets such that B ≤ A, cardB ≤ β and cardA ≤ α. Then A′ ≤ B′, cardA′ ≤ α,
cardB′ ≤ β and there is a c ∈ P such that A′ ≤ c ≤ B′, i.e., B ≤ c′ ≤ A. Hence
P is (β, α)-interpolated. The reverse implication can be proved analogously.

3



3.6 Proposition. Let α, β be infinite cardinals, β be a limit cardinal. Then a
poset is (α, β)-interpolated ((β, α)-interpolated, resp.) if and only if it is (α, γ)-
interpolated ((γ, α)-interpolated resp.) for every infinite cardinal γ < β.

Proof. Obvious.

According to the previous proposition, for a limit cardinal we have the inter-
polation if and only if we have the interpolation for all smaller cardinals. The
following example shows that this is not true for any nonlimit cardinal.

3.7 Example. Let X1, X2, X3, X4 be disjoint sets of an infinite set cardinality
α, X =

⋃4
i=1Xi. Let us put

E0 = {∅, X1 ∪X2, X2 ∪X3, X3 ∪X4, X4 ∪X1, X} ,
E =

{
A ⊂ X : card

(
(A \A0) ∪ (A0 \A)

)
< α for some A0 ∈ E0

}
.

Then (E,⊂, c, ∅, X) with Ac = X \A for every A ∈ E is an effect algebra.
Let us show that E is α-interpolated. Let F,G ⊂ E be nonempty, F ≤ G,

cardF, cardG < α. If one of the sets is one-element then this element is an
interpolation of F,G. Let us suppose that both F,G are at least two-element.
Every element of E is derived from some element of E0 using a symmetric
difference with a subset of X of cardinality less than α. If a nonempty set of
elements of E derived from A ∈ E0 has the cardinality less than α then both
its union and intersection is an element of E derived from A. If there are at
least two elements of E0 \ {∅, X} used for elements of F or some element of
F is derived from X then every element of G is derived from X and therefore∧
G =

⋂
G is an interpolation of F,G. If there is at most one element of

E0 \ {∅, X} used for elements of F then
∨
F =

⋃
F is an interpolation of F,G.

Let us consider F =
{
{x} : x ∈ X1

}
, G = {X1 ∪ X2, X1 ∪ X4}. Then

F ≤ G, cardF = α, cardG = 2, every upper bound of F has the cardinality
α, every lower bound of G has the cardinality less than α. Hence, E is not
(α+ 1, ω0)-interpolated.

4 Interpolation and completeness

Let us show some relations of α-interpolated posets to posets with some sort
of completeness. The notion of weak orthocompleteness was introduced by
Ovchinnikov [6] in case of orthomodular lattices and generalized by Tkadlec [8]
in case of effect algebras. We present here a more general definition involving
cardinalities and also a weak form of completeness.

4.1 Definition. Let α be an infinite cardinal. A poset (P,≤) is α-complete if
for every nonempty set A ⊂ P both

∨
A and

∧
A exist. It is weakly α-complete

if for every nonempty set A ⊂ P (1) either
∨
A exists or A has no minimal

upper bound; (2) either
∧
A exists or A has no maximal lower bound.

There are standard special cases: ω0-complete poset is called a lattice; a
lattice that is α-complete for the greatest cardinal α, i.e., that is β-complete for
every set cardinal β, is called complete. It suffices to check only one condition
(e.g., for

∨
A) in de Morgan posets.
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4.2 Definition. Let E be an effect algebra. A system (ai : i ∈ I) of elements
of E is orthogonal if

⊕
i∈F ai is defined for every finite set F ⊂ I.

A majorant of an orthogonal system is an upper bound of all its finite sums.
The sum

⊕
(ai : i ∈ I) of an orthogonal system is its least majorant (if it

exists).
Le α be an infinite cardinal. An effect algebra E is α-orthocomplete if every

its orthogonal system (ai : i ∈ I) with card I < α has the sum. An effect
algebra E is weakly α-orthocomplete if every its orthogonal system (ai : i ∈ I)
with card I < α either has the sum or has no minimal majorant.

Even a nonzero element of an effect algebra might be orthogonal to itself,
hence we need to consider systems (containing possibly some elements more
than once) instead of sets. Every pair of elements of an orthogonal system is
orthogonal. On the other hand, there are mutually orthogonal elements that
do not form an orthogonal system if the effect algebra is not an orthomodular
poset. Every effect algebra is ω0-orthocomplete.

The second part of the following statement was proved by Bennett and
Foulis [1, Lemma 2.6 (i)].

4.3 Proposition. Let α be an infinite cardinal. Every α-complete poset is
α-interpolated. In particular, every lattice is ω0-interpolated.

Proof. Let P be an α-complete posetA,B ⊂ P be nonempty, A ≤ B, cardA, cardB <
α. Then

∨
A (
∧
B) is an interpolation of A,B.

4.4 Proposition. Let α be an infinite cardinal. Every α-interpolated poset is
weakly α-complete.

Proof. Let P be an α-interpolated poset, A ⊂ P be nonempty with cardA < α.
Then the set of upper bounds of A is downward directed, hence every its minimal
element is its least element. Analogously for the set of lower bounds of A.

4.5 Proposition. Let α be an infinite cardinal. Every (α, ω0)-interpolated effect
algebra is weakly α-orthocomplete.

Proof. Let E be an (α, ω0)-interpolated effect algebra and O = (ai : ai ∈ I)
be an orthogonal system in E with card I < α. Let us denote by A the set of
finite sums of O. Then cardA < α and, according to the assumption, the set of
majorants of O (i.e., upper bounds of A) is downward directed. Hence it either
has the least element (the sum of O) or no minimal element.

The following result generalizes the result of Bennett and Foulis [1, Lemma 2.6 (ii)]
stated for bounded finite posets with the interpolation property.

4.6 Proposition. Every ω0-interpolated pseudolattice is a lattice.

Proof. Let P be na ω0-interpolated pseudolattice, a, b ∈ P . Since P is a pseu-
dolattice, there is a maximal lower bound c of {a, b}. For every lower bound
d of {a, b} we have {c, d} ≤ {a, b} and therefore there is an interpolation e of
these two sets; since c is maximal, e = c and therefore d ≤ c. It means that
c = a ∧ b. The existence of a ∨ b can be proved analogously.
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5 Interpolation and compatibility

First, let us recall the definition of compatibility and some known properties of
effect algebras.

5.1 Definition. Elements a, b of an effect algebra E are compatible (denoted by
a↔ b) if there is an orthogonal system (Mackey decomposition of a, b) (a1, b1, c)
in E such that a = a1 ⊕ c and b = b1 ⊕ c.

5.2 Lemma. Elements a, b of an effect algebra E are compatible if and only if
there is an element c ∈ E such that c ≤ a, b and a ⊥ (b	 c).

Proof. ⇒: Let a, b ∈ E are compatible. Then there are is a Mackey decompo-
sition (a1, b1, c) of a, b and therefore a = (a1 ⊕ c) ⊥ b1 = (b	 c).
⇐: Let a, b, c ∈ E such that c ≤ a, b and a ⊥ (b 	 c). Then a ⊕ (b 	 c) =

(a	c)⊕c⊕(b	c) is defined and therefore (a	c, b	c, c) is a Mackey decomposition
of a, b.

5.3 Lemma. Let E be an effect algebra, a, b, c, d ∈ E, B ⊂ E.
(1) If b ⊥ (a	 c) and c ≤ d ≤ a then b ⊥ (a	 d).
(2) If a ⊥ B and

∨
B exists then a ⊥

∨
B.

(3) If a↔ b then a↔ b′.

Proof. (1) If c ≤ d ≤ a then c⊕(a	c) = a = d⊕(a	d) = c⊕(d	c)⊕(a	d). Using
the cancellation law we obtain a	 c = (d	 c)⊕ (a	 d), therefore a	 d ≤ a	 c.
If b ⊥ (a	 c) then (a	 c) ≤ b′, therefore (a	 d) ≤ b′, i.e., b ⊥ (a	 d).

(2) For every b ∈ B, if a ⊥ b then b ≤ a′. Hence
∨
B ≤ a′, i.e., a ⊥

∨
B.

(3) If a↔ b then, according to Lemma 5.2 there is a c ∈ E such that c ≤ a, b
and (a 	 c) ⊥ b. Then (a 	 c) ≤ a, b′ and, since c ≤ b, a 	 (a 	 c) = c ⊥ b′.
According to Lemma 5.2, a↔ b′.

The following theorem is an analogue of the result of Jenča and Riečanová [5,
Theorem 2.1], which was stated for lattice (instead of interpolated) effect alge-
bras.

5.4 Theorem. Let E be an effect algebra, a ∈ E, B ⊂ E, a ↔ B and E
is (cardB + 1, ω0)-interpolated. If

∨
B (

∧
B, resp.) exists, then a ↔

∨
B

(a↔
∧
B, resp.).

Proof. We obtain for every b ∈ B: since a ↔ b then, according to Lemma 5.2,
there is a cb ∈ E such that cb ≤ {a, b} and b ⊥ (a 	 cb). Hence C = {cb :
b ∈ B} ≤ {a,

∨
B} and, according to the assumptions, there is a c ∈ E such

that C ≤ c ≤ {a,
∨
B}. According to Lemma 5.3 (1), b ⊥ (a	 c), according to

Lemma 5.3 (2),
∨
B ⊥ (a	 c), according to Lemma 5.2, a↔

∨
B.

If
∧
B exists then

∨
B′ = (

∧
B)′ exists and, according to Lemma 5.3 (3),

a ↔ B′. Using the first part of the theorem we obtain that a ↔
∨
B′ and,

according to Lemma 5.3 (3), a↔ (
∨
B′)′ =

∧
B.
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